Undercover Princesses Where Are They Now, Andrew Kaczynski Wife, Desert Vista Football, Catonsville Police Scanner, Trial Of A Timelord 71 Edits, Articles C

Example 1. /Name/F3 Sequences & Series in Calculus Chapter Exam. If it converges, compute the limit. Quiz 2: 8 questions Practice what you've learned, and level up on the above skills. Then click 'Next Question' to answer the next question. Indiana Core Assessments Mathematics: Test Prep & Study Guide. 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 792.7 435.2 489.6 707.2 761.6 489.6 Psychological Research & Experimental Design, All Teacher Certification Test Prep Courses. 722.6 693.1 833.5 795.8 382.6 545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 These are homework exercises to accompany David Guichard's "General Calculus" Textmap. We will also give many of the basic facts and properties well need as we work with sequences. All rights reserved. n = 1 n2 + 2n n3 + 3n2 + 1. Alternating Series Test In this section we will discuss using the Alternating Series Test to determine if an infinite series converges or diverges. PDF Calculus II Series - Things to Consider - California State University Math 129 - Calculus II. 17 0 obj 666.7 1000 1000 1000 1000 1055.6 1055.6 1055.6 777.8 666.7 666.7 450 450 450 450 Part II. Good luck! >> 26 0 obj << &/ r /Widths[611.8 816 761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 707.2 571.2 544 544 (answer), Ex 11.10.9 Use a combination of Maclaurin series and algebraic manipulation to find a series centered at zero for \( x\cos (x^2)\). )^2\over n^n}(x-2)^n\) (answer), Ex 11.8.6 \(\sum_{n=1}^\infty {(x+5)^n\over n(n+1)}\) (answer), Ex 11.9.1 Find a series representation for \(\ln 2\). 238 0 obj <>/Filter/FlateDecode/ID[<09CA7BCBAA751546BDEE3FEF56AF7BFA>]/Index[207 46]/Info 206 0 R/Length 137/Prev 582846/Root 208 0 R/Size 253/Type/XRef/W[1 3 1]>>stream Psychological Research & Experimental Design, All Teacher Certification Test Prep Courses. >> 979.2 489.6 489.6 489.6] PDF Ap Calculus Ab Bc Kelley Copy - gny.salvationarmy.org If you . 31 terms. 508.8 453.8 482.6 468.9 563.7 334 405.1 509.3 291.7 856.5 584.5 470.7 491.4 434.1 (answer), Ex 11.3.10 Find an \(N\) so that \(\sum_{n=0}^\infty {1\over e^n}\) is between \(\sum_{n=0}^N {1\over e^n}\) and \(\sum_{n=0}^N {1\over e^n} + 10^{-4}\). All rights reserved. }\) (answer), Ex 11.8.3 \(\sum_{n=1}^\infty {n!\over n^n}x^n\) (answer), Ex 11.8.4 \(\sum_{n=1}^\infty {n!\over n^n}(x-2)^n\) (answer), Ex 11.8.5 \(\sum_{n=1}^\infty {(n! Find the sum of the following geometric series: The formula for a finite geometric series is: Which of these is an infinite sequence of all the non-zero even numbers beginning at number 2? A proof of the Integral Test is also given. Level up on all the skills in this unit and collect up to 2000 Mastery points! If youd like a pdf document containing the solutions the download tab above contains links to pdfs containing the solutions for the full book, chapter and section. Premium members get access to this practice exam along with our entire library of lessons taught by subject matter experts. Infinite series are sums of an infinite number of terms. (answer), Ex 11.9.2 Find a power series representation for \(1/(1-x)^2\). { "11.01:_Prelude_to_Sequences_and_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.02:_Sequences" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.03:_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.04:_The_Integral_Test" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.05:_Alternating_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.06:_Comparison_Test" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.07:_Absolute_Convergence" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.08:_The_Ratio_and_Root_Tests" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.09:_Power_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.10:_Calculus_with_Power_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.11:_Taylor_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.12:_Taylor\'s_Theorem" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.13:_Additional_Exercises" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.E:_Sequences_and_Series_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Analytic_Geometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Instantaneous_Rate_of_Change-_The_Derivative" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Rules_for_Finding_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Transcendental_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Curve_Sketching" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Applications_of_the_Derivative" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Techniques_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Applications_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Polar_Coordinates_and_Parametric_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Sequences_and_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Three_Dimensions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Vector_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Partial_Differentiation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Multiple_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Vector_Calculus" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "authorname:guichard", "license:ccbyncsa", "showtoc:no" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FBook%253A_Calculus_(Guichard)%2F11%253A_Sequences_and_Series%2F11.E%253A_Sequences_and_Series_(Exercises), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\).